메인메뉴바로가기

한양대학교 산학협력단

홈으로 바로가기 > 연구정보 > 연구성과 > 금주의 우수논문

연구성과 > 금주의 우수논문

페이스북 로그인트위터 로그인카카오톡 로그인메일 전송
view

SCI-E Article

Photonic split-second induced mesoporous TiO2-Graphene architectures for efficient sodium-ion batteries
성명 김동원()
소속 공과대학 화학공학과
캠퍼스
우수선정주 2021년 06월 1째주
Author Ambade, Rohan B. (Dept Organ & Nano Engn); Eom, Wonsik (Dept Organ & Nano Engn); Shin, Hwansoo (Dept Organ & Nano Engn); 한태희 (Dept Organ & Nano Engn) corresponding author; Veerasubramani, Ganesh Kumar (Dept Chem Engn); 김동원 (Dept Chem Engn) corresponding
Corresponding Author Info Han, TH (corresponding author), Hanyang Univ, Dept Organ & Nano Engn, Seoul 04763, South Korea.; Kim, DW (corresponding author), Hanyang Univ, Dept Chem Engn, Seoul 04763, South Korea.; Kim, YB (corresponding author), Hanyang Univ, Dept Mech Convergence E
E-mail 이메일 아이콘dongwonkim@hanyang.ac.kr
Document Type Article
Source CARBON Volume:178 Issue: Pages:332-344 Published:2021
Times Cited
External Information http://dx.doi.org/10.1016/j.carbon.2021.03.028
Abstract Rechargeable sodium-ion batteries (SIBs) have received significant attention as a promising alternative to traditional lithium-ion counterparts for large-scale energy storage applications owing to the low cost and abundance of sodium resources. Herein, we demonstrate the photonic irradiated mesoporous reduced graphene oxide (rGO)-TiO2 nanocomposite architectures using environmentally benign, ultrafast splitsecond (millisecond) intense pulsed light (IPL) process at room temperature. The photonic IPL irradiation spontaneously triggers the deoxygenation of graphene oxide (GO) and the simultaneous structural engineering of TiO2 nanocomposites. The precisely controlled IPL irradiation (energy density of 10 J cm(-2)) exhibits excellent conductivity, high surface area, and outstanding electrochemical performance as a green anode material for SIBs. The photonic IPL irradiated rGO-TiO2 nanocomposite delivers a high reversible capacity of 244 mAh g(-1) at 0.1 Ag-1, a high rate performance of 112 mAh g(-1) at 1 Ag-1, and high cycling stability compared to pristine GO-TiO2 and conventional furnace annealed rGO-TiO2 (FHrGO-TiO2) nanocomposites. The detailed electrochemical analysis suggests that the improved capacitance contribution results from the fast kinetics of the IPL irradiated rGO-TiO2 nanocomposite anode. This work provides new insight into the fabrication of versatile, cost-effective techniques for developing advanced electrode materials for energy applications. (C) 2021 Elsevier Ltd. All rights reserved.
Web of Science Categories Chemistry, Physical; Materials Science, Multidisciplinary
Funding Basic Science Research Program [2016R1A6A1A03013422]; program for fostering nextgeneration researchers in engineering [2017H1D8A2032495]; Korea Institute of Energy Technology Evaluation and Planning - Korea government [20204010600090, 201700000003242]
Language English
페이스북 로그인트위터 로그인카카오톡 로그인메일 전송 리스트